Creation, innovation and Entrepreneurship
一、个人基本情况
姓名:肖晓晖
出生年月:1969年12月
学历:博士
职称:教授(博导)
职务:副院长
E-mail:xhxiao@whu.edu.cn,xhxiao08@gmail.com
二、学习及工作经历
1998.7-至今 武汉大学动力与机械学院机械工程系,教师;
2006.10-2008.5美国伊利诺大学香槟分校(University of Illinois at Urbana-Champaign, UIUC),博士后研究,从事微/纳米操作机器人的精密控制研究。
2001.3-2005.5 华中科技大学,获机械电子工程专业博士学位;
1996.9-1998.6 武汉大学,获机械学专业硕士学位;
1987.9-1991.6 武汉大学,获工程机械专业学士学位;
三、主要研究方向
(1)微/纳米定位、微操作系统的测控;
(2)机器人:双足步行机器人、检测机器人、协作机器人;
(3)复杂机电系统动力学与可靠性分析;
四、主讲课程
博士研究生:《机电系统智能控制》
硕士研究生:《测试技术与信号分析》(本科,研究生);
本科:《机械工程测试技术》,《机器人学》
五、学术及主要科研成果
1、科研项目
(a)在研项目
2019-至今,主持重点实验室开放基金资助项目;
2019-至今,湖北省技术创新专项(重大项目)“基于视觉与力觉感知的柔性智能工业机器人自动化物流分拣系统”;
2018-至今,中铁建集团公司科技项目:高速铁路接触网关键零部件故障失效与疲劳分析;
2017-至今,主持国家自然科学基金项目“复合地面环境下双足机器人全欠驱动混合的仿人行走稳定性控制”(项目批准号:51675385);
2017-至今,主持深圳市基础研究计划“面向多维多任务的微操作机器人快速精密运动控制研究”(项目批准号:JCYJ20170306171514468);
2017-至今,企业科技研发项目:管道内检测及异物清除机器人;
2017-至今,企业科技研发项目:磁吸附机器人检测机器人。
(b)已完成的项目
2014-017,主持国家自然科学基金项目“基于频域误差补偿策略的微操作机器人快速精密控制研究”(项目批准号:51375349);
2014-2016,主持广州市质量监督局科技项目“管道内检测机器人”;
2012-2015,主持国家自然科学基金”基于柔性作业路径的步行机器人耦合动力学与步态规划研究”(项目批准号:51175383);
2012-2015,主持南方电网科技项目“基于导波的电力金属构件检测机器人”;
2010-2012,主持国家重点实验室开放基金“二自由度快速纳米定位平台及其控制器研究”;
2009-2012,主持回国留学基金项目“用于纳米级定位的多柔性铰链的微动平台”;
2009-2010,主持铁道部科技项目“高速铁路牵引供电系统-防灾技术研究”;
2006-2008,参加美国国家科学基金项目“微型并联机器人平台的研制”和“三自由度纳米操作平台的控制”;
2006.9-2008,主持湖北省自然科学基金项目“移动机器人与柔性作业环境间的耦合动力学研究”(项目编号:2006NS-402);
2004-2007,主持武汉市科技晨光计划“柔性机器人动力学分析与振动控制研究”(项目编号:20045006071-28),2007年通过验收;
2004-2005,主持铁道部科技攻关项目“接触网系统的可靠性、可用性、可维修性和安全性(RAMS)分析与研究”,2006年3月通过验收,并获2006年湖北省科技进步二等奖;
2006-2009,参加国家自然科学基金项目“基于有障柔索的移动机器人机构、动力学与控制研究”(项目编号:50575165);
2003-2006,主持湖北省科技攻关项目“考虑微尺度效应的微机械静力与弹性动力学研究”,2006年12月结题;
2002-2007,参加国家高新技术(863)项目“220kV相线巡线机器人中关键技术”(项目编号:2005AA2006-1, 2002AA420110-6),负责其中机器人动力学、控制器设计的研究工作。2007年7月通过验收。
2、国家、省部级科技奖励:
(1)获2018年中国铁道建设总公司科学技术一等奖(排名:3)
(2)获2016年中华人民共和国国家科学技术进步二等奖,“基于耦合动力学的高速铁路接触网/受电弓系统技术创新及应用”(排名:6)
(3)获2014年中国铁道学会铁道科技特等奖(排名:2)
(4)获2006年湖北省科技进步二等奖(排名2)
(5)获2011年铁建总科技进步二等奖(排名:2)
(6)获2011年铁道部科技进步二等奖(排名:5)
(7)获2002年中国电力科学技术三等奖(排名:7)
(8)获2003年安徽省科学技术三等奖(排名:7)
3、近年来发表论文与专著
第一作者/通信作者发表期刊论文:
[1] Ling J., Feng Z., Ming M., & Xiao X.H. (2019). “Model reference adaptive damping control for a nanopositioning stage with load uncertainties.” Review of Scientific Instruments. 90(4): 045101.
[2] Ling J., Rakotondrabe M., Feng Z., Ming M., and & Xiao, X.H. (2019). A robust integral resonant controller design for high-bandwidth tracking of piezo-actuated nanopositioning platform. IEEE Transactions on Control System Technology. doi: 10.1109/TCST.2019.2899566.
[3] Feng Z., Ling J., Ming M., & Xiao X.H. (2019). Integrated modified repetitive control with disturbance observer of piezoelectric nanopositioning stages for high-speed and precision motion. ASME Journal of Dynamic Systems, Measurement, and Control. doi: 10.1115/1.4042879.
[4] Gao X., Ling J., Xiao X.H. & Li M. (2019). Learning Force-relevant Skills from Human Demonstration. Journal of Complexity.
[5] Ming M., Ling J., Feng Z., & Xiao X.H. (2018). A model predictive control with hysteresis compensation based on the multiplicative-inverse structure for precision tracking of a piezo-actuated nanopositioning stage. International Journal of Precision Engineering and Manufacturing, 19(11): 1699-1708.
[6] Ling, J., Feng, Z., Ming, M., & Xiao, X.H. (2018). Damping controller design for nanopositioners: A hybrid reference model matching and virtual reference feedback tuning approach. International Journal of Precision Engineering and Manufacturing, 19(1), 13-22
[7] Feng, Z., Ling, J., Ming, M., & Xiao, X. H. (2017). High-bandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner. Review of Scientific Instruments, 88(8), 085107.
[8] Feng, Z., Ling, J., Ming, M., & Xiao, X. H. (2017). Data-based double-feedforward controller design for a coupled parallel piezo nanopositioning stage. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 231(10), 881-892.
[9] Ling, J., Feng, Z., Yao, D., & Xiao, X. H. (2018). Non-linear contour tracking using feedback PID and feedforward position domain cross-coupled iterative learning control. Transactions of the Institute of Measurement and Control, 40(6), 1970-1982.
[10] Feng, Z., Ling, J., Ming, M., & Xiao, X. H. (2018). A model-data integrated iterative learning controller for flexible tracking with application to a piezo nanopositioner. Transactions of the Institute of Measurement and Control, 40(10), 3201-3210.
[11] Ming, M., Feng, Z., Ling, J., & Xiao, X. H. (2018). Hysteresis modelling and feedforward compensation of piezoelectric nanopositioning stage with a modified Bouc-Wen model. Micro & Nano Letters, 13(8), 1170-1174.
[12] Ling, J., Feng, Z., Ming, M., & Xiao, X. H. (2018). PRECISION CONTOUR TRACKING USING FEEDBACK-FEEDFORWARD INTEGRATED CONTROL FOR A 2-DOF MANIPULATION SYSTEM. International Journal of Robotics and Automation, 33(3).
[13]凌杰,明敏,冯朝, &肖晓晖. (2017).多轴运动系统非线性轮廓重复跟踪的主从交叉耦合迭代学习控制.自动化学报, 43(12), 2127-2140.
[14]冯朝,凌杰,明敏, &肖晓晖. (2018).融合迭代学习与干扰观测器的压电微动平台精密运动控制.机器人,40(06):825-834.
[15] Wang Y., Ding J., & Xiao X.H. (2019). A position-Domain Adaptive Control Method for Underactuated Bipedal Walking on a Compliant Ground. International Journal of Humanoid Robotics.
[16] Ding, J., Wang, Y., Yang, M., & Xiao, X. H. (2018). Walking stabilization control for humanoid robots on unknown slope based on walking sequences adjustment. Journal of Intelligent & Robotic Systems (1), 1-16.
[17] Guo, Z., Xiao, X., & Yu, H. (2018). Design and Evaluation of a Motorized Robotic Bed Mover With Omnidirectional Mobility for Patient Transportation. IEEE journal of biomedical and health informatics, 22(6), 1775-1785.
[18] Yao, D., He, S., Wu, Y., Xiao, X. H., & Wang, Y. (2018). Feedforward control for underactuated bipedal walking on varying compliant slopes. Transactions of the Canadian Society for Mechanical Engineering, 42(2), 90-104.
[19] Wu, Y., Yao, D., & Xiao, X. H. (2018). The effects of ground compliance on flexible planar passive biped dynamic walking. Journal of Mechanical Science & Technology, 32(4), 1793-1804.
[20] Wang, Y., Ding, J., & Xiao, X. H. (2017). An adaptive feedforward control method for under-actuated bipedal walking on the compliant ground. International Journal of Robotics and Automation, 32(1), 63-77.
[21] Ding, J., Xiao, X. H., & Wang, Y. (2016). Preview control with adaptive fuzzy strategy for online biped gait generation and walking control. International Journal of Robotics and Automation, 31(6).
[22] Wu, Y., Yao, D., Xiao, X. H., & Guo, Z. (2018). Intelligent controller for passivity-based biped robot using deep Q network. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-15.
[23] Wu, Y., Yao, D., Guo, Z., & Xiao, X. H. (2018). Adaptive stiffness control of passivity-based biped robot on compliant ground using double deep Q network. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406218781402.
[24] Wu, Y., Yao, D., & Xiao, X. (2018). Optimal Design for Flexible Passive Biped Walker Based on Chaotic Particle Swarm Optimization. Journal of Electrical Engineering and Technology, 13(6), 2493-2503.
[25] Yao, D., Wu, Y., Wang, Y., & Xiao, X. (2018). EXPERIMENTAL VALIDATION OF A CONTROL METHOD FOR UNDERACTUATED BIPEDAL WALKING ON COMPLIANT GROUND. International Journal of Robotics and Automation, 33(5).
[26]解五一,高霄,何思宇,肖晓晖.面向复合材料自动铺放设备的输带速度与张力协同解耦控制[J].浙江大学学报(工学版),2019,53(03):455-462.
[27]孙剑韬,周江琛,郭朝,肖晓晖.面向柔性机器人的串联式变刚度驱动器设计[J].华中科技大学学报(自然科学版),2019,47(01):7-12.
[28]陈潇,吴志鹏,何思宇,肖晓晖.自适应支撑式管道检测机器人的通过性设计[J].中南大学学报(自然科学版),2018,49(12):2953-2962.
[29]寇重光,谢涛,陈潇,游鹏辉,肖晓晖.面向电厂管道的攀爬机器人运动规划与仿真[J].中南大学学报(自然科学版),2018,49(08):1936-1943.
[30]陈建芳,丁加涛,肖晓晖.基于3-D步行序列的双足机器人步态规划及实验研究[J].中南大学学报(自然科学版),2018,49(04):831-838.
[31]姚道金,张勇,吴垚,肖晓晖.面向变高度连续台阶的双足欠驱动步行稳定控制[J].机器人,2018,40(05):712-722.
[32]姚渊,姚道金,肖晓晖, &王杨. (2017).面向非连续性地面的双足欠驱动步行稳定控制.机器人, 39(5), 742-750.
[33]姚道金,王杨,姚渊,丁加涛, &肖晓晖. (2017).基于质心运动状态的双足机器人欠驱动步行稳定控制.机器人, 39(3), 324-332.
[34]王杨,张强, &肖晓晖. (2016).基于鲁棒建模的气动人工肌肉驱动仿生关节的轨迹跟踪控制.机器人, 38(2), 248-256.
[35]丁加涛,肖晓晖, &王杨. (2016).双足步行机器人在线步态生成与偏航控制策略.中南大学学报(自然科学版), 47(4), 1136-1143.
[36]张强,肖晓晖,王杨,游鹏辉, &谢涛. (2015).考虑能耗优化的双足步行机器人柔性关节研究.中南大学学报(自然科学版)46(11), 4070-4076.
[37]陆荣信,陈建芳,冯朝,肖晓晖,徐俊, &吴怡. (2014).基于柔性步行路径的双足步行机器人步态参数分析.中南大学学报:自然科学版, 45(10), 3443-3449.
[38]魏喆,肖晓晖,童雪梅, &柳亮. (2011).铁路牵引供电系统接触网结构的防灾分析.铁道学报, 33(6), 31-34.
第一作者/通信作者发表期会议论文:
[1] Ling, J., Feng, Z., Ming, M., Guo, Z., & Xiao, X. H. Integrating Damping Control with Iterative Learning Control for Fast and Precise Scanning of Nanopositioners: A TITO Design. IEEE International Conference on Advanced Robotics and Mechatronics (ICARM 2018)
[2] Ling J., Feng Z., Guo Z., & Xiao X.H. (2018). Integrating damping control with iterative learning control for fast and precise scanning of nanopositioners: a TITO design." IEEE International Conference on Advanced Robotics and Mechatronics (ICARM). Jul. 18-20, Singapore.
[3] Guo Z., Sun J.T., Ling J., Sun T., Pan Y. P. & Xiao X.H. (2018). Robust Control of a Serial Variable Stiffness Actuator Based on Nonlinear Disturbance Observer (NDOB)." IEEE International Conference on Advanced Robotics and Mechatronics (ICARM). Jul. 18-20, Singapore.
[4] Ling, J., Feng, Z., Yao, D., & Xiao, X. H. (2016, July). A position domain iteration learning control for contour tracking with application to a multi-axis motion testbed. In American Control Conference (ACC), 2016 (pp. 1247-1252). IEEE.
[5] Ling, J., Feng, Z., Ming, M., & Xiao, X. H. (2016, August). Combined Model-Free Decoupling Control and Double Resonant Control in Parallel Nanopositioning Stages for Fast and Precise Raster Scanning. In International Conference on Intelligent Robotics and Applications (pp. 51-62). Springer, Cham.
[6] Feng, Z., Ling, J., Ming, M., & Xiao, X. H. (2016, August). Data-Driven Feedforward Decoupling Filter Design for Parallel Nanopositioning Stages. In International Conference on Intelligent Robotics and Applications (pp. 709-720). Springer, Cham.
[7] Ling, J., Feng, Z., & Xiao, X. H. (2015, August). A position domain cross-coupled iteration learning control for contour tracking in multi-axis precision motion control systems. In International Conference on Intelligent Robotics and Applications (pp. 667-679). Springer, Cham.
[8] Ding, J., Xiao, X. H., Wang, Y., & Xu, B. (2015, August). Preview control with an angle adjustment strategy for robust real-time biped walking pattern generation. In International Conference on Intelligent Robotics and Applications (pp. 321-332). Springer, Cham.
[9] Zhang, Q., Teng, L., Wang, Y., Xie, T., & Xiao, X. H. (2015, August). A study of flexible energy-saving joint for biped robots considering sagittal plane motion. In International Conference on Intelligent Robotics and Applications (pp. 333-344). Springer, Cham.
[10] Zhang, Q., Xiao, X. H., & Guo, Z. (2016, August). Power efficiency-based stiffness optimization of a compliant actuator for underactuated bipedal robot. In International Conference on Intelligent Robotics and Applications (pp. 186-197). Springer, Cham.
[11] Ding, J., Yang, M., Zhou, J., Yao, D., & Xiao, X. H. (2017, December). Robust real-time walking pattern generation with dynamical consistency: An analytical method combined with optimal solution. In Robotics and Biomimetics (ROBIO), 2017 IEEE International Conference on (pp. 1806-1811). IEEE.
4、国家发明专利(第一发明人)
[1]肖晓晖,杨明辉,周江琛,姚道金.一种基于仿生学的柔性被动足部系统[P].湖北:CN109018061A, 2018-12-18.
[2]肖晓晖,曹力科,李杰超,高霄.一种超声探伤装置及方法[P].湖北:CN108982665A, 2018-12-11.
[3]肖晓晖,解五一,高霄,何思宇,刘胜.一种基于复合材料铺带头的输带装置[P].湖北:CN108621443A, 2018-10-09.
[4]肖晓晖,吴志鹏,陈潇,邵浩东.一种可变直径的管道内漏磁检测装置[P].湖北:CN108426943A, 2018-08-21.
[5]肖晓晖,张强,姚道金,寇重光,王杨,陈潇.一种基于柔性驱动器的欠驱动双足步行机器人[P].湖北:CN105599822A, 2016-05-25.
[6]肖晓晖,陈潇,吴志鹏,王韬涵,王卫宁,郭江昆.一种柔性自适应的支撑式管道内检测机器人[P].湖北:CN105465551A, 2016-04-06.
[7]肖晓晖,游鹏辉,成甫,陈潇,姚道金,谢涛.基于3G/GSM网络的自供电多变量分布式在线监测系统及方法[P].湖北:CN105469583A, 2016-04-06.
[8]肖晓晖,陈犇.用于穿戴式下肢外骨骼机器人与人体腰部固定的调节装置[P].湖北:CN105105896A, 2015-12-02.
[9]肖晓晖,陈犇,李晓聃,徐本燕.一种用于穿戴式下肢外骨骼机器人的足部装置[P].湖北:CN105105897A, 2015-12-02.
[10]肖晓晖,朱泽群,游鹏辉,谢涛,张匆.一种基于数字IO的超声探伤数据采集装置及方法[P].湖北:CN105092715A, 2015-11-25.
[12]肖晓晖,朱泽群,游鹏辉,陆荣信,游凡.一种高速铁路接触网系统雷电波形在线监测装置[P].湖北:CN104267250A, 2015-01-07.
[13]肖晓晖,张强,王杨,游凡.一种模块化的十自由度双足步行机器人[P].湖北:CN104071250A, 2014-10-01.
[14]肖晓晖,游凡,王杨,徐俊,朱泽群.一种单自由度的旋转关节模块[P].湖北:CN103802125A, 2014-05-21.
[15]肖晓晖,游凡,王杨,朱泽群,徐俊.一种机器人夹持模块[P].湖北:CN103786160A, 2014-05-14.
[16]肖晓晖,吴松林,宋云超,游凡.一种排管检测机器人[P].湖北:CN103398297A, 2013-11-20.
[17]肖晓晖,游凡,宋云超,吴松林.一种基于超声导波技术的排管检测机器人[P].湖北:CN103395064A, 2013-11-20.
[18]肖晓晖,罗伟,宋云超,朱泽群,陆荣信,凌杰.一种基于模块化阵列传感器的仿人机器人足部结构[P].湖北:CN103057620A, 2013-04-24.
[19]肖晓晖,宋云超,陆荣信,徐俊,凌杰,朱泽群.基于无线传感网络的多变量分布式在线监测系统[P].湖北:CN103067941A, 2013-04-24.
[20]肖晓晖,潘立志.一种二维微动平台[P].湖北:CN101837586A, 2010-09-22.